62 research outputs found

    Spin-spin correlations between two Kondo impurities coupled to an open Hubbard chain

    Get PDF
    In order to study the interplay between Kondo and Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction, we calculate the spin-spin correlation functions between two Kondo impurities coupled to different sites of a half-filled open Hubbard chain. Using the density-matrix renormalization group (DMRG), we re-examine the exponents for the power-law decay of the correlation function between the two impurity spins as a function of the antiferromagnetic coupling J, the Hubbard interaction U, and the distance R between the impurities. The exponents for finite systems obtained in this work deviate from previously published DMRG calculations. We furthermore show that the long-distance behavior of the exponents is the same for impurities coupled to the bulk or to both ends of the chain. We note that a universal exponent for the asymptotic behavior cannot be extracted from these finite-size systems with open boundary conditions.Comment: 8 pages, 10 figures; v2: final version, references and Fig. 8 adde

    Lanczos algorithm with Matrix Product States for dynamical correlation functions

    Get PDF
    The density-matrix renormalization group (DMRG) algorithm can be adapted to the calculation of dynamical correlation functions in various ways which all represent compromises between computational efficiency and physical accuracy. In this paper we reconsider the oldest approach based on a suitable Lanczos-generated approximate basis and implement it using matrix product states (MPS) for the representation of the basis states. The direct use of matrix product states combined with an ex-post reorthogonalization method allows to avoid several shortcomings of the original approach, namely the multi-targeting and the approximate representation of the Hamiltonian inherent in earlier Lanczos-method implementations in the DMRG framework, and to deal with the ghost problem of Lanczos methods, leading to a much better convergence of the spectral weights and poles. We present results for the dynamic spin structure factor of the spin-1/2 antiferromagnetic Heisenberg chain. A comparison to Bethe ansatz results in the thermodynamic limit reveals that the MPS-based Lanczos approach is much more accurate than earlier approaches at minor additional numerical cost.Comment: final version 11 pages, 11 figure

    The Long Life of Birds: The Rat-Pigeon Comparison Revisited

    Get PDF
    The most studied comparison of aging and maximum lifespan potential (MLSP) among endotherms involves the 7-fold longevity difference between rats (MLSP 5y) and pigeons (MLSP 35y). A widely accepted theory explaining MLSP differences between species is the oxidative stress theory, which purports that reactive oxygen species (ROS) produced during mitochondrial respiration damage bio-molecules and eventually lead to the breakdown of regulatory systems and consequent death. Previous rat-pigeon studies compared only aspects of the oxidative stress theory and most concluded that the lower mitochondrial superoxide production of pigeons compared to rats was responsible for their much greater longevity. This conclusion is based mainly on data from one tissue (the heart) using one mitochondrial substrate (succinate). Studies on heart mitochondria using pyruvate as a mitochondrial substrate gave contradictory results. We believe the conclusion that birds produce less mitochondrial superoxide than mammals is unwarranted

    Mitochondriale Protonen-Freisetzung w�hrend der Adenosintriphosphat-Hydrolyse

    No full text

    Density functional study of selected mono-zinc and gem-dizinc radical carbenoid cyclopropanation reactions: observation of an efficient radical zinc carbenoid cyclopropanation reaction and the influence of the leaving group on ring closure

    No full text
    We report a theoretical study of the cyclopropanation reactions of EtZnCHI, (EtZn)2CH EtZnCHZnI, and EtZnCIZnI radicals with ethylene. The mono-zinc and gem-dizinc radical carbenoids can undergo cyclopropanation reactions with ethylene via a two-step reaction mechanism similar to that previously reported for the CH2I and IZnCH2 radicals. The barrier for the second reaction step (ring closure) was found to be highly dependent on the leaving group of the cyclopropanation reaction. In some cases, the (di)zinc carbenoid radical undergoes cyclopropanation via a low barrier of about 5–7 kcal/mol on the second reaction step and this is lower than the CH2I radical reaction which has a barrier of about 13.5 kcal/mol for the second reaction step. Our results suggest that in some cases, zinc radical carbenoid species have cyclopropanation reaction barriers that can be competitive with their related molecular Simmons-Smith carbenoid species reactions and produce somewhat different cyclopropanated products and leaving groups
    • …
    corecore